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Abstract

In this note we introduce and prove local and potential independent transportation, Log-Sobolev and
HWI inequalities in one-dimensional free probability on compact intervals which are sharp. We recover
using this approach a free transportation inequality on the whole real line which was put forward recently
by Maïda and Maurel-Segala (2012) [10]. Our method is based on the operator theoretic approach developed
by Ledoux and Popescu [7] to deal with the free Poincaré inequality.
 2013 Elsevier Inc. All rights reserved.
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1. Introduction

There is a large literature on functional inequalities in the classical case. Some of these in-
equalities apply to the case of random matrices and produce, as the dimension grows to infinity,
interesting functional inequalities in the limit. The main connection between the random matri-
ces and free probability is due to the main result of Voiculescu [18,17] which states that large
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random matrices become asymptotically free as the dimension grows to infinity. This is a very
rich bridge from free probability to random matrices and back.

Among the counterparts of classical inequalities, we mention the transportation which was
first discussed by Biane and Voiculescu in [3] for the quadratic potentials and was inspired by
the work of Otto and Villani [11]. We describe now the statement of this inequality as it is an
important point in the economy of this note.

For a given potential V : R → R, the logarithmic energy with external field V of a probability
measure on R is defined by

EV (µ) =
∫

V dµ −
∫ ∫

log |x − y|µ(dx)µ(dy).

It is a standard result (cf. [15]) that under some mild growth of V , there is a unique probability
measure µV , which minimizes the functional EV . If we set EV (µ|µV ) = EV (µ)−EV (µV ) this
plays the analog of the entropy in the classical case. The transportation inequality associated to
V states that there is a positive ρ such that for any compactly supported probability measure µ

ρW 2
2 (µ,µV ) ! EV (µ|µV ) (1.1)

where W2(µ, ν) is the Wasserstein distance based on quadratic cost function given by

W2(µ, ν) =
{

inf
π∈Π(µ,ν)

∫
|x − y|2π(dx dy)

}1/2

for measures µ,ν of finite second moment with Π(µ,ν) being the set of probability measures on
R × R with marginals µ and ν. This was first proved for the case of V (x) = x2/2 by Biane and
Voiculescu in [3] using complex Burger’s equation and then for the case of V (x)−ρx2 convex in
[6] using random matrices. Yet, another direct approach is using tools from mass transportation
and is given in [14,8].

Another classical inequality which found a natural analog in the free probability world is the
Log-Sobolev which was introduced in a certain form by Voiculescu in [19] and then proved to be
equivalent to the one which is most common now by Biane and Speicher in [2]. With the notation
from above, it states that there is a positive ρ such that for any probability measure µ,

4ρEV (µ|µV ) ! I (µ|µV ) (1.2)

where

I (µ|µV ) =
∫ (

Hµ − V ′)2
dµ with Hµ(x) =

{
p.v.

∫ 2
x−y µ(dy) dµ

dx ∈ L3(R),

+∞ otherwise

where the integral in the definition of the Hilbert transform Hµ is in the principal value sense.
This inequality has received a random matrix proof in [1] and in the case V (x) − ρx2 is convex.
Another alternative proof using tools from the mass transportation is given in [8].

Notice that so far these inequalities require some convexity on the potential V . A natural ques-
tion is to ask if there is a transportation or Log-Sobolev without the convexity assumption on V .
For the transportation case there is a version put forward recently by Maïda and Maurel-Segala
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in [10] in which the main condition on V is a quadratic growth at infinity and the base metric W2
is replaced by W1, a weaker metric. They use this to say something about the concentration of
the empirical distribution of eigenvalues of random matrices with general potentials.

For the Log-Sobolev case, without convexity assumption, the statement from (1.2) cannot be
true as it is. What is the natural replacement of (1.2) if we drop the convexity on V is not clear.

At one end is the case of (strong) convex potentials where both (1.1) and (1.2) are well un-
derstood but as soon as we loose the convexity property, the inequalities in discussion become
problematic. At the other end of the spectrum is the case of these inequalities which are in fact
potential independent. It is this topic which is under investigation here.

Now we describe a little bit the main results and how the paper is organized.
To formulate the question clearly, the first change is that in place of the entropy EV (µ|µV )

we use a very closely related quantity which for any two probability measures µ,ν, is given by

H(µ, ν) = −
∫ ∫

log |x − y|(µ − ν)(dx)(µ − ν)(dy).

As one can see, this is independent of the potential V , but it is not really very different from
EV (µ|µV ) (see for instance, (4.2) below).

One of the main results of this note is that for probability measures supported on [−2,2],

W 2
1 (µ, ν) ! 2H(µ, ν) (1.3)

where the inequality is actually sharp. This inequality can be seen as a local version of the
transportation inequality which is at the same time potential independent. By scaling, this can be
extended to probability measures on any compact interval, and thus it can be really interpreted
as some form of universal transportation inequality. This is treated in Section 2.

In Section 3 we show that the metric W1 is optimal in (1.3) and cannot be replaced by any
other Wp with p > 1.

The interesting fact is that now if we take a potential V , with at least quadratic growth at
infinity, then we can actually turn the local version of (1.3) into a global transportation inequality
which states that for some C > 0 and any probability measure µ on R,

CW 2
1 (µ,µV ) ! EV (µ|µV ),

which is the result from [10]. This is the content of Section 4. The idea we use here is borrowed
from the mass transportation techniques to combine the local transportation with the growth of
V at infinity.

Section 5 is dedicated to a local version of the Log-Sobolev. The first thing we need to set
up properly is the analog of the Fisher information, IV (µ|µV ). When restricted to [−2,2], the
version we propose is the following

J (µ, ν) =
{∫

(Hµ − Hν)2 dα if Hµ,Hν ∈ L2(α),

+∞ otherwise

where α is the semicircle law on [−2,2] and Hµ is the Hilbert transform of the measure µ. One
of the main results in this section is that
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J (µ, ν) =
{

2
∫
( dµ

dβ − dν
dβ )2 dβ if dµ

dβ , dν
dβ ∈ L2(β),

+∞ otherwise

with β being the arcsine law on [−2,2]. This last equality is nothing but the interesting property
of the Hilbert transform which says that the map

Hβ :L2(β) → L2(α), Hβφ = H(φ dβ)

is an isometry up to a multiplication by a constant. Using these properties, we prove the following
local version of the free Log-Sobolev. For any probability measures on [−2,2],

2H(µ, ν) ! J (µ, ν). (1.4)

As in the case of local transportation this turns out to be sharp.
We continue this discussion in Section 6 of the local Log-Sobolev in which the L2 norm

of Hµ − Hν from the definition of J above is replaced by the square of the Lp norm with
1 < p < 2. It is shown that if such a Log-Sobolev holds true, then necessarily 3/2 ! p but it
is posted as an open problem if p = 3/2 is the optimal threshold for which the inequality is
satisfied. At any rate, even though p = 3/2 does not produce an Lp version of the Log-Sobolev,
it is still natural to look for the smallest which does produce such an inequality.

Finally in Section 7 we discuss a version of the celebrated Otto–Villani HWI inequality which
links together W1, H and J . This is a refinement of the Log-Sobolev inequality.

On the technical side, the main tools we use here are borrowed from the operator theoretical
approach to the free Poincaré inequality put forward in [8] and, as we already mentioned, for
the global version of transportation inequality we employ some tools from the classical mass
transportation.

2. Potential independent transportation inequality on [−L,L]

We will treat here essentially the case of measures on [−2,2]. The case of measures on
[−L,L] following by simple scaling.

Given a p " 1 and two measures µ,ν on the real line such that
∫

|x|pµ(dx) and
∫

|x|pν(dx)

are both finite, we define

Wp(µ,ν) =
{

inf
π∈Π(µ,ν)

∫
|x − y|pπ(dx dy)

}1/p

(2.1)

where here Π(µ,ν) denotes the set of probability measures on R2 with marginals µ,ν. Wp is a
metric for the weak topology on the set of probability measures with pth finite moment.

We will be interested in W1 which can also be characterized as

W1(µ, ν) = sup
{∫

g d(µ − ν),
∣∣g(x) − g(y)

∣∣ ! |x − y|
}
. (2.2)

W1 is a distance for the topology of weak convergence of probability measures with finite first
moment.
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Another description of the distance Wp is given by the following (see for example [16, p. 75]).
If µ, ν are two probability measures on R such that ν does not have atoms, then there is a unique
non-decreasing map θ such that θ#ν = µ (i.e. µ(A) = ν(θ−1(A))). In addition,

W1(µ, ν) =
∫ ∣∣θ(x) − x

∣∣ν(dx). (2.3)

Next we define the free reduced relative entropy of two compactly supported measures µ,ν ∈
P(R) to be given by

H(µ, ν) = −
∫ ∫

log |x − y|(µ − ν)(dx)(µ − ν)(dy). (2.4)

It is well known [15, Lemma 1.8] or [5, Lemma 6.41] that H(µ, ν) " 0 with equality if and only
if µ = ν. For the integrability properties see a detailed discussion in [5, p. 142] the only thing we
point out here being that H(µ, ν) is finite if and only if

∫ ∫ ∣∣log |x − y|
∣∣µ(dx)µ(dy) < ∞ and

∫ ∫ ∣∣log |x − y|
∣∣ν(dx)ν(dy) < ∞.

If either of these conditions fail, we set H(µ, ν) = +∞.
For measures on the interval [−2,2], the reduced relative entropy can be well understood in

terms of the operator structure associated to the logarithmic potential of measures on [−2,2]. To
this matter we recall here some of the main results discussed in [7] which were put forward in
order to deal with the free Poincaré inequality.

We will work with the following reference measures on [−2,2]

α(dx) =
√

4 − x2

2π
dx, and β(dx) = dx

π
√

4 − x2
.

Most of the action takes place around the arcsine measure β and we will use 〈,〉 to denote the
inner product in L2(β). In the sequel we will use the following notation

φn(x) = Tn

(
x

2

)
and ψn(x) = Un

(
x

2

)
for n " 0, (2.5)

where Tn(x), the Chebyshev polynomials of the first kind, are defined by Tn(cos θ) = cos(nθ) and
Un, the Chebyshev polynomials of second kind, are described by Un(cos θ) = sin(n+1)θ

sin θ . Adjusting
a little bit the polynomials Tn as T̃0 = T0 and T̃n(x) =

√
2Tn(x), then it is easy to see that

{T̃n(x/2)}n!0 is an orthonormal basis for L2(β). Similarly, {Un(x/2)}n!0 forms an orthonormal
basis for L2(α). Another relation which plays an important role here is

φ′
n = n

2
ψn−1. (2.6)

First, we introduce the operators E,N ,L on C2 functions on [−2,2] as follows. Given a C2

function φ : [−2,2] → R, set
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(Eφ)(x) = −
∫

log |x − y|φ(y)β(dy),

(Nφ)(x) =
∫

yφ′(y)β(dy) + x

∫
φ′(y)β(dy) −

(
4 − x2)

∫
φ′(x) − φ′(y)

x − y
β(dy),

(Lφ)(x) = −
(
4 − x2)φ′′(x) + xφ′(x). (2.7)

For convenience in what follows we will use the space

K =
{
f ∈ L2(β):

∫
f dβ = 0

}

which is the orthogonal to constants in L2(β). The reason we single out this space is that the
operators N and E (properly extended) are the inverse of each other.

Now we summarize the main properties presented in [7, Proposition 1] and needed in this
note.

Proposition 1.

(1) E sends C2([−2,2]) into C2([−2,2]) and can be extended to a bounded selfadjoint operator
from L2(β) into itself.

(2) For any C2 function φ ∈ K ,

ENφ = φ, NEφ = φ. (2.8)

(3) In addition Eφ0 = 0, while for n " 1, Eφn = 1
nφn and Nφn = nφn for any n " 0. In other

words, N is the counting number operator for the Chebyshev basis in L2(β).
(4) N can be canonically extended to a selfadjoint operator on L2(β) which restricted to K has

inverse E .
(5) L=N 2 and it satisfies for any C2 functions φ,ψ ∈ L2(β),

〈Lφ,ψ〉 = 2
∫

φ′ψ ′ dα. (2.9)

In what follows, a key role is played by the following corollary.

Corollary 1. For any C2 functions φ,ψ ∈ K ,

〈φ,ψ〉 = 2
∫ (

E2φ
)′
ψ ′ dα = 2

∫
(Eφ)′(Eψ)′ dα. (2.10)

Proof. This follows from (2.9) with φ replaced by E2φ and the fact that E and N are the inverse
of each other. Indeed, the first equality follows by replacing φ by E2φ in (2.9), while the second
equality follows by replacing in (2.9) φ by Eφ and ψ by Eψ and then using that E is selfadjoint
on K and ELE = E2L= (EN )2 = I on K . !
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Another simple consequence of Proposition 1 is the following representation.

Corollary 2. If µ(dx) = φ(x)β(dx) and ν(dx) = ψ(x)β(dx) with φ,ψ ∈ L2(β) on [−2,2],
then

H(µ, ν) =
〈
E(φ −ψ),φ −ψ

〉
. (2.11)

The first main result of this note is the following.

Theorem 1. For any two probability measures µ,ν on [−2,2],

W 2
1 (µ, ν) ! 2H(µ, ν). (2.12)

Equality is attained for any two probability measures µ,ν such that µ(dx) − ν(dx) = cxβ(dx)

for some constant c.

Proof. We should notice first that the maximization from (2.2) can be taken over the set of
smooth functions g with the property that

∫
g dβ = 0. Hence,

W1(µ, ν) = sup
{∫

g d(µ − ν), g ∈ K and
∣∣g′∣∣ ! 1

}
. (2.13)

Now we prove first (2.12) for the case of measures µ, ν which have smooth densities with
respect to the reference measure β . Therefore, write µ − ν =ψdβ and continue with

W1(µ, ν) = sup
{∫

gψ dβ,
∣∣g′∣∣ ! 1

}
,

where now the supremum is taken over all smooth functions g.
Furthermore, for any smooth function g with bounded derivative by 1, using (2.10) we have

the following string of equalities and inequalities

∫
gψ dβ = 2

∫
g′(E2ψ

)′
dα

! 2
∫ ∣∣(E2ψ

)′∣∣dα ! 2
(∫ ((

E2ψ
)′)2

dα

)1/2

=
√

2〈Eψ,Eψ〉1/2

=
√

2
〈
E2ψ,ψ

〉1/2
. (2.14)

The inequality we want to prove now certainly follows from (2.11) and the fact that

〈
E2ψ,ψ

〉
! 〈Eψ,ψ〉, (2.15)

which is a consequence of the fact that the spectrum of E :K → K is {1,1/2,1/3, . . .} with eigen-
functions {φ1, φ2, φ3, . . .}. More precisely, if we write ψ = ∑

n!1 γnφn, then (2.15) is equivalent
to
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∑

n!1

1
n2 γ

2
n !

∑

n!1

1
n
γ 2
n ,

which is obvious. In fact this inequality is saturated when γn are all 0 with the exception of n = 1.
Thus tracing back all the inequalities in between we get equality in (2.12) for any measures µ,ν

for which µ − ν = cx dβ with some constant c.
In the second place, an approximation procedure shows that we can reduce the proof to the

case of measures having smooth densities with respect to β .
To carry out this reduction, notice that if H(µ, ν) is infinite then there is nothing to prove

here, so we will assume that H(µ, ν) is finite in which case, according to [5, Eq. 6.47],

H(µ, ν) =
∞∫

0

|µ̂(t) − ν̂(t)|2
t

dt (2.16)

with the standard notation of µ̂ being the Fourier transform (or the characteristic function) of the
measures µ.

In order to use this equation we consider a smooth compactly supported function ζ : [0,1] →
[0,∞] such that

∫ 1
0 ζ(x) dx = 1. Now, set ζε(x) = 1

ε ζ(x/ε) for small ε and consider the measure
ξε(dx) = ζε(x) dx. Based on the measure ξε we construct µε = ξε . µ and similarly νε = ξε . ν

where . is the standard classical convolution operation. It is now clear in the first place that µε

and νε are probability measures with smooth compact support such that µε −→
ε→0

µ and νε −→
ε→0

ν

in the weak topology. In particular this means that

W1(µε, νε)−→
ε→0

W1(µ, ν). (2.17)

At the same time

H(µε, νε)−→
ε→0

H(µ, ν) (2.18)

which follows from (2.16) and

H(µε, νε) =
∞∫

0

|µ̂(t) − ν̂(t)|2|ζ̂ε |2
t

dt −→
ε→0

∞∫

0

|µ̂(t) − ν̂(t)|2
t

dt

where in the last part we used |ζ̂ε | ! 1 and limε→0 ζ̂ε = 1 combined with the dominated converge.
Hence, we have smooth compactly supported approximations of µ,ν, the only problem is

that the approximations µε , νε have support in [−2 − ε,2 + ε]. Thus what we can do is to take
/ε(x) = x/(1+ ε) which maps [−2− ε,2+ ε] into [−2+ ε/(1+ ε),2− ε/(1+ ε)] and therefore
the push forward µ̃ε = (/ε)#µε and ν̃ε = (/ε)# are probability measures with smooth densities
supported on [−2 + ε/(1 + ε),2 − ε/(1 + ε)]. On the other hand it is easy to see that

W1(µε, νε) = (1 + ε)W1(µ̃ε, ν̃ε)

and
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H(µ̃ε, ν̃ε) =H(µε, νε) + log(1 + ε).

The conclusion is that now we can apply the smooth case to the measures µ̃ε and ν̃ε to deduce
that

W 2
1 (µε, νε) ! 2(1 + ε)2(H(µε, νε) + log(1 + ε)

)

which combined with (2.17) and (2.18) leads to (2.12) for any probability measures µ,ν on
[−2,2]. !

A corollary of the proof of Theorem 1 is the following nice representation of W1 in terms of
the operator E which we want to record and use later as a separate result.

Corollary 3. If µ,ν are two probability measures on [−2,2] such that dµ − dν = ψdβ , where
ψ is in L2(β), then

W 2
1 (µ, ν) = 2

〈
E2ψ,ψ

〉
. (2.19)

Proof. In the case of smooth ψ , the proof is nothing but the content of the key sequence of
inequalities from (2.14).

For the general case, we need to approximate ψ ∈ L2(β) by smooth functions. This requires
a little care but it is straightforward and we point only the main steps.

First, notice that by simple approximations, it is sufficient to prove the statement for measures
µ,ν which are supported inside (−2,2).

Second, take the mollifier ζε as in the proof of Theorem 1 and consider the standard mol-
lification of ψ as ψε = ζε . ψ . It is clear that ψε converges a.s. to ψ and in L2(β). To see
the last part, the convergence in L2(β), one needs to observe that due to Cauchy’s inequality,
|ψε(x)|2 ! 2π‖ψ‖2

L2(β)
, from which ψε is certainly in L2(β) and its norm is controlled by the

norm of ψ . This is sufficient to conclude that ψε converges in L2(β) toward ψ . !

By simple scaling we have the following consequence of Theorem 1.

Corollary 4. If µ,ν are two probability measures supported on [−L,L], then

W 2
1 (µ, ν) ! 2L2H(µ, ν). (2.20)

The constant 2L2 in front of H is sharp.

Remark 1. In the classical case, the Csiszár–Kullback–Pinsker inequality states that

‖µ − ν‖2
v ! 2H(µ, ν)

for any two measures on the real line where H(µ|ν) is the classical relative entropy given by
H(µ|ν) =

∫ dµ
dν log dµ

dν dν in the case µ is absolutely continuous with respect to ν and is +∞
otherwise. Also the distance ‖µ − ν‖v is the total variation distance.
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Édouard Maurel-Segala and Mylène Maïda asked if there is such an inequality in the free
case. The answer turns out to be negative and is relatively straightforward in the setup put up
here.

To see this choose some probability measures µ,ν on [−2,2] such that µ − ν = cφndβ with
n " 1. With this choice, using (2.11),

‖µ − ν‖v = |c|
∫

|φn|dβ while H(µ, ν) = c2〈Eφn,φn〉 = c2

2n
.

Since it is not hard to check that for any n " 1

∫
|φn|dβ = 1

π

π∫

0

∣∣cos(nt)
∣∣dt = 2

π
,

the conclusion is that there is no constant C > 0 such that

C‖µ − ν‖2
v !H(µ|ν)

for all probability measures µ,ν on [−2,2].
In the classical case Csiszár–Kullback–Pinsker on compact intervals implies the transporta-

tion with W1 metric and this is also the reason why the latter is eclipsed by the former. In the free
context, since the Csiszár–Kullback–Pinsker fails, it makes the W1 transportation more interest-
ing.

3. No local transportation with respect to the Wp-metric, p > 1

Given the above local transportation from Theorem 1, one natural question in this framework
is whether one can extend it to the case of Wp metric instead of W1 with p > 1.

In other words, is there a constant C > 0 such that for any measures µ,ν supported in [−2,2],
the following holds true

CW 2
p(µ, ν) !H(µ, ν)? (3.1)

As we will see, the answer is no. To see why this is the case, we start with the following [16,
p. 75]

W
p
p (µ, ν) =

1∫

0

∣∣F−1
µ (t) − F−1

ν (t)
∣∣p dt,

where Fµ,Fν are the cumulative functions of µ,ν and F−1
µ , F−1

ν are their generalized inverses.
Now, take dµ = φ dβ , φ > 0 on [−2,2] with φ ∈ C∞([−2,2]). Then choose νε = (φ + εh)dβ ,
where h is a smooth compactly supported function on (−2,2) with

∫
hdβ = 0 and ε is small

enough. With this choice and (2.11) it is obvious that

H(µ, νε) = ε2〈Eh,h〉. (3.2)
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On the other hand, it is not hard to show that the cumulative functions of µ, ν are smooth and
they actually depend smoothly also on ε. Denoting now for simplicity F(x) = Fµ(x), Fε(x) =
Fνε (x), and G(x) =

∫ x
−2 h(y)β(dy), then

Fε(x) = F(x) + εG(x).

From this, it is not hard to see that

F−1
ε (t) = F−1(t) − ε

G(F−1(t))

f (F−1(t))
+ O

(
ε2)

where f (x) = F ′(x). Consequently, it follows that

W 2
p(µ, νε) = ε2

1∫

0

|G(F−1(t))|p
|f (F−1(t))|p dt + O

(
ε4) =

∫
G2(x)

f (x)
dx

= ε2

π

2∫

−2

|
∫ x
−2 h(y)β(dy)|p
φp−1(x)

(
4 − x2)(p−1)/2

dx + O
(
ε4).

If we assume (3.1) is true for some constant C > 0, then letting ε go to 0, the above consider-
ations lead to the following conclusion. For any φ > 0 such that

∫
φ dβ = 1 and any compactly

supported smooth function h on (−2,2), we get that

C

π

2∫

−2

|
∫ x
−2 h(y)β(dy)|p
φp−1(x)

(
4 − x2)(p−1)/2

dx ! 〈Eh,h〉.

Then this yields that this must be true for any smooth function h on [−2,2] and any smooth
positive φ on [−2,2] such that

∫
φ dβ = 1. However, if we fix a function h, say h(x) = x, then

the above inequality implies that there is a positive constant C ′ > 0 such that

2∫

−2

(4 − x2)(2p−1)/2

φp−1(x)
dx ! C′

for any smooth positive function φ such that
∫
φ dβ = 1. But we can choose a function φ which is

arbitrary close to 0 on the interval [−1/3,1/3] and the above inequality leads to a contradiction.
This argument shows that (3.1) cannot be true, so there is no local transportation with Wp-metric,
p > 1.

From a certain perspective, this argument is just a linearization of the transportation inequality
and this in the classical case corresponds to a Poincaré inequality for the reference measure µ. In
a similar fashion, the argument outlined above says that not every measure µ on [−2,2] satisfies
a free Poincaré inequality. The right version of such a Poincaré inequality in this framework is
actually the one discussed in details in [7], but we do not enter into further discussion here.



Author's personal copy

I. Popescu / Journal of Functional Analysis 264 (2013) 1456–1479 1467

4. A global version of transportation inequality on the whole real line

Now we want to prove a transportation inequality on the whole real line which in this case is
potential dependent. To setup the scene, we will take a potential V : R → R such that

Assumption 1. V is bounded below, measurable and satisfies

lim inf
|x|→∞

V (x)

x2 > 0.

For any probability measure µ ∈ P(R),

EV (µ) =
∫

V dµ −
∫ ∫

log |x − y|µ(dx)µ(dy).

It is known, see for example [15, Theorem 1.3] that there is a unique measure (also with compact
support) µV which minimizes EV (µ) over all probabilities µ ∈P(R).

The equilibrium measure µV (cf. [15, Theorem I.1.3]) satisfies

V (x) " 2
∫

log |x − y|µV (dy) + KV quasi-everywhere on R

V (x) = 2
∫

log |x − y|µV (dy) + KV quasi-everywhere on suppµV , (4.1)

where KV is known as Robin constant.
For the definition of the notion of quasi-everywhere see for instance [15, p. 25]. In what

follows, to simplify a little bit the exposition, we will denote

U(x) = 2
∫

log |x − y|µV (dy) + KV .

For simplicity in what follows, we denote EV (µV ) = EV and we set the relative free entropy

EV (µ|µV ) = EV (µ) − EV (µV ).

For any measure µ, using the above equalities we can write now,

EV (µ|µV ) =
∫ (

V (x) − U(x)
)
µ(dx) +H(µ,µV ). (4.2)

Because of Assumption 1 and (4.1), there are constants A,B > 0 such that

V (x) − U(x) " A1[−B,B]c (x)x2. (4.3)

For a given measure µ ∈P(R) with compact support, say in [−L,L], one thing we can try to do
is to use (2.20) and (4.1) to estimate from below H(µ,µV ). Hence we get at first that



Author's personal copy

1468 I. Popescu / Journal of Functional Analysis 264 (2013) 1456–1479

Fig. 1. The graph of φ.

EV (µ|µV ) "
∫

(V − U)dµ + 1
2L2 W 2

1 (µ,µV ).

The problem here is that as L goes to infinity the W1 term simply disappears. On the other hand,
for large values of L, the potential V is bounded from below by a quadratic, while U grows at
most logarithmically, thus for large values of L, V − U grows at least quadratically. With this
in mind, the idea is to refine the above scheme so that it takes better advantage of the quadratic
growth.

To carry this idea through, we do the following. Take a large L " B such that µV is sup-
ported on [−L/2,L/2]. From (4.3), we learn that V (x) " Ax2 for |x| " L. Consider the function
φ : [−

√
3L,

√
3L] → R (see Fig. 1) given by

φ(x) =






− 2L3

3L2−x2 , −
√

3L < x ! −L,

x, −L < x ! L,
2L3

3L2−x2 , L < x !
√

3L.

There are several elementary properties of this function we will use in the sequel. For L "
31/4,

1) φ is odd, increasing and C1 on (−
√

3L,
√

3L)

2) φ′(x) is decreasing on (−
√

3L,0] and is increasing on [0,
√

3L)

3) lim
x→−

√
3L

φ(x) = −∞, lim
x→

√
3L

φ(x) = ∞

4) φ(x) = x for − L ! x ! L

5) log
∣∣∣∣
φ(x) − φ(y)

x − y

∣∣∣∣ ! 2 log
∣∣φ(x)

∣∣ + 2 log
∣∣φ(y)

∣∣ if |x| ∨| y| " L. (4.4)

Next, define ν = (φ−1)#µ and notice that ν is supported on [−
√

3L,
√

3L]. Now we start
using (4.1) to justify that



Author's personal copy

I. Popescu / Journal of Functional Analysis 264 (2013) 1456–1479 1469

EV (µ|µV ) =
∫ (

V
(
φ(x)

)
− U(x)

)
ν(dx) −

∫ ∫
log

∣∣∣∣
φ(x) − φ(y)

x − y

∣∣∣∣ν(dx)ν(dy) +H(ν,µV ).

(4.5)

The point of this is that ν is supported on [−
√

3L,
√

3L] and from (2.20),

H(ν,µV ) " 1
6L2 W 2

1 (ν,µV ). (4.6)

Now let’s turn our attention to the first two terms of (4.5) and notice that because φ(x) = x
for x ∈ [−L,L] and V (x) " U(x), combined with the last line of (4.4), yields

∫ (
V

(
φ(x)

)
− U(x)

)
ν(dx) −

∫ ∫
log

∣∣∣∣
φ(x) − φ(y)

x − y

∣∣∣∣ν(dx)ν(dy)

"
∫

|x|!L

(
A

∣∣φ(x)
∣∣2 − 2 log(2

√
3L) − C

)
ν(dx) − 4

∫

|x|!L

log
∣∣φ(x)

∣∣ν(dx)

" A

2

∫

|x|!L

φ2(x)ν(dx)

for large L and a certain constant C > 0. Putting together these findings, we conclude that for
large L,

EV (µ|ν) " A

2

∫

|x|!L

φ2(x)ν(dx) + 1
6L2 W 2

1 (ν,µV ).

At this point we use the characterization of the Wasserstein distance given by (2.3). Namely,
if θ is the transportation map of µV into ν, then φ ◦ θ is the transportation map of µV into µ.
Thus, the right-hand side of the above equation can be continued as

A

2

∫

|x|!L

φ2(x)ν(dx) + 1
6L2

(∫ ∣∣θ(x) − x
∣∣µV (dx)

)2

= A

2

∫

|θ(x)|!L

φ2(θ(x)
)
µV (dx) + 1

6L2

( ∫

|θ(x)|"L

∣∣θ(x) − x
∣∣µV (dx)

)2

= A

2

∫

|θ(x)|!L

φ2(θ(x)
)
µV (dx) + 1

6L2

( ∫

|θ(x)|"L

∣∣φ
(
θ(x)

)
− x

∣∣µV (dx)

)2

" 2A

9

∫

|θ(x)|!L

(
φ
(
θ(x)

)
− x

)2
µV (dx) + 1

6L2

( ∫

|θ(x)|"L

∣∣φ
(
θ(x)

)
− x

∣∣µV (dx)

)2

" 2A

9

( ∫

|θ(x)|!L

∣∣φ
(
θ(x)

)
− x

∣∣µV (dx)

)2

+ 1
6L2

( ∫

|θ(x)|"L

∣∣φ
(
θ(x)

)
− x

∣∣µV (dx)

)2
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" 2A

12AL2 + 9
W 2

1 (µ,µV ).

To clarify this long equation we make the following points. The second equality in the above
follows from the fourth property of (4.4). The third inequality follows from the fact that
3|φ(y)| " 2|φ(y) − x| for any |x| ! L/2 and |y| " L which (because φ is increasing and
odd) it is easy to see it is equivalent to 3φ(L) " 2(φ(L) + L/2) which is obviously clear from
φ(L) = L. The second inequality is just Cauchy’s inequality and the last one is easy to see from
am2 + bn2 " (m + n)2/(1/a + 1/b) for a, b,m,n " 0.

What we just proved is the following global version of the transportation inequality.

Theorem 2. Under Assumption 1, there is a constant C > 0 depending on V such that for any
probability measure µ on R,

CW 2
1 (µ,µV ) ! EV (µ|µV ). (4.7)

Remark 2. What is worth pointing here is that the constant C depends on the choice of L,
which in turn is determined by the constants A,B from (4.3), the constant KV from (4.1) and the
support of µV .

5. Local versions of free Log-Sobolev inequality

The main feature of the transportation inequality in Theorem 1 is that its formulation does
not depend on any potential on the interval [−2,2]. Perhaps better said, the quantities H(µ, ν)

and W1(µ, ν) are defined independently of the potential V defining the relative entropy in (4.1).
However the potential independent result of Theorem 1 combined with a growth at infinity, pro-
vides the necessary ingredients for a transportation inequality with a potential V as is presented
in Theorem 2.

On the other hand in [2] the free Log-Sobolev is introduced and deduced from an inequality of
[19]. The main statement is as follows. We say that the free Log-Sobolev associated to a potential
V : R → R holds true if there is a constant ρ > 0 such that for any probability measure µ ∈P(R),

ρEV (µ|µV ) ! I (µ|µV ) (5.1)

where

I (µ|µV ) =
{∫

(Hµ − V ′)2 dµ if dµ
dx ∈ L3(R),

+∞ otherwise
(5.2)

and

Hµ(x) = p.v.

∫
2

x − y
µ(dy) (5.3)

with the integral taken in the principal value sense.
This inequality was then reproved by Biane in [1] for the case of strongly convex potentials

V using random matrix approximations and also in [8] using tools form mass transportation.
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One immediate consequence of the above inequality and the uniqueness of the equilibrium
measure is that if V ′ = Hµ holds almost surely on the support of µ, then µ must be equal to µV .

It was pointed out in [1] by Biane that in the case of nonconvex potentials, the free logarithmic
Sobolev inequality cannot hold true due essentially to the fact that one can construct different
measures whose Hilbert transforms agree to V ′ on their supports and this violates (5.1) and the
uniqueness of the minimizer of EV (µ). The example given there is the one in which V is a
double well potential with V (x) = (x − a1)

2/2 on J1 = [a1 − 2, a1 + 2] and V (x) = (x − a2)
2/2

on J2 = [a2 − 2, a2 + 2] with |a1 − a2| > 4. With this choice it is clear that V ′ is equal to the
Hilbert transform on J1 of the semicircular measure on J1. Similarly, V ′ is equal to the Hilbert
transform on J2 of the semicircular measure on J2.

Therefore Log-Sobolev inequality cannot be true without extra assumptions on the poten-
tial V . In order to get a version which is potential independent, one reasonable thought is to try
replacing the derivative of V ′ by something which is in terms of the measure µV . A natural can-
didate to that is the Hilbert transform of µV . Furthermore the roles played by µ and µV should
be symmetric and thus the integral with respect to µ in (5.2) should be replaced by an integral
with respect to a measure which is symmetric with respect to both, µ and µV . One way of fixing
this is to integrate with respect to a fixed measure rather than a measure depending on µ and µV .

To summarize the preceding paragraph, we introduce a potential independent Log-Sobolev in
the form of

ρH(µ, ν) !
∫

(Hµ − Hν)2 dζ

where here we take a reference measure ζ supported on a certain set K and the measures µ,ν to
be supported by K .

We do not investigate here the general situation alluded above but focus on the following
version of the free information for measures supported on [−2,2] with the reference measure ζ

being the semicircular measure α:

J (µ, ν) =
{∫

(Hµ − Hν)2 dα if Hµ,Hν ∈ L2(α),

+∞ otherwise.
(5.4)

If αL is the semicircular law on [−2L,2L], then the extension of the above is

JL(µ, ν) =
{∫

(Hµ − Hν)2dαL if Hµ,Hν ∈ L2(αL),

+∞ otherwise.
(5.5)

Assume for the moment that dµ = φ dβ with φ a C2 function on [−2,2]. In this case, since
Eφ is a C2 function, the principal value integral defining Hµ for x ∈ (−2,2) can be shown to be
equal to

1
2
(Hµ)(x) = d

dx
(Eφ)(x) = (Uφ)(x) :=

∫
φ(x) − φ(y)

x − y
β(dy). (5.6)

Given a function φ, we will use the notation Hβφ for H(φβ).



Author's personal copy

1472 I. Popescu / Journal of Functional Analysis 264 (2013) 1456–1479

The operator U appears in [7] and the main property it satisfies is that

‖Uf ‖2
α = 1

2
Varβ(f ) (5.7)

for any f ∈ L2(β) where Varβ(f ) is the variance of f with respect to β . In particular, what this
says is that the operator U is an isometry between the spaces orthogonal to constants in L2(β)

and L2(α).
To see this property, it suffices to check that

Uφn = 1
2
ψn−1 (5.8)

which actually follows from d
dx (Eφ)(x) = (Uφ)(x) and (2.6).

The upshot of the above consideration is that if dµ = φ dβ and dν =ψ dβ are two probability
measures with φ,ψ being C2 on [−2,2], then

∫
(Hµ − Hν)2 dα = 4

∫ (
U(φ −ψ)

)2
dα = 2

∫
(φ −ψ)2 dβ.

It is this formula which inspires the following definition

I(µ, ν) =
{∫

( dµ
dβ − dν

dβ )2 dβ if dµ
dβ , dν

dβ ∈ L2(β),

+∞ otherwise.
(5.9)

For a given L > 0, we define on measures supported on [−2L,2L],

IL(µ, ν) =
{∫

( dµ
dβL

− dν
dβL

)2 dβL if dµ
dβL

, dν
dβL

∈ L2(βL),

+∞ otherwise.
(5.10)

Theorem 3.

(1) For a measure µ supported on [−2,2], dµ
dβ ∈ L2(β) if and only if Hµ ∈ L2(α).

(2) For any probability measures, µ,ν on [−2,2],

J (µ, ν) = 2I(µ, ν). (5.11)

(3) For any probability measures µ,ν on [−2,2],

2H(µ, ν) ! J (µ, ν) = 2I(µ, ν), (5.12)

with equality if µ(dx) − ν(dx) = Cxβ(dx).
(4) In particular, by simple rescaling, for any probability measures µ,ν on [−L,L],

2H(µ, ν) ! J (µ, ν) = 2L2IL(µ, ν).
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Proof.

(1) To prove the assertion, we recall two facts from the theory of Hilbert transform. The
definition of the Hilbert transform is given by (notice that this is twice the one appearing in the
literature)

Hµ(x) = p.v.

∫
2

x − y
µ(dx) = lim

ε→0

∫
2(x − y)

(x − y)2 + ε2 µ(dy).

It is a standard result in the theory of Hilbert transform (see for instance [4] and reproved in [9])
that this is well defined λ-a.s., for all points x, with λ being the Lebesgue measure on R.
The first result we will use states that there is a constant C > 0 such that for any finite positive
measure µ

tλ
({

x:
∣∣Hµ(x)

∣∣ " t
})

! C‖µ‖v for all t > 0. (5.13)

Here ‖µ‖v is the variation of µ (i.e. in this case is just µ(R)). It is a straightforward fact that this
can be extended to any finite measure µ not necessarily positive, with the change that ‖µ‖v =
µ+(R) + µ−(R) where µ = µ+ − µ− is the standard decomposition of µ into the non-negative
and non-positive parts. This fact can be found for instance in [9] but it is eventually attributed to
Kolmogorov.
The second result we will use is that if µ is a finite measure and we take dµ = f dλ+ µs , where
µs is the singular part of the measure µ, then

lim
t→∞

πt

2
1{x: |Hµ(x)|!t}) dλ= dµs (5.14)

where the convergence is in the sense of weak convergence. This can be found for instance in
[12, Eq. 5.4] and [13, Theorem 1].
Now, we proceed to the proof of the main statement. Assume first that φ = dµ

dβ ∈ L2(β). Then

we want to prove that Hµ ∈ L2(α). To do this, observe that since φ ∈ L2(β), we can use (5.7) to
show that there is an extension of Hµ to L2(α). More precisely, approximate φ with a sequence
of smooth positive functions ζn in [−2,2] with

∫
ζndβ = 1 and this in turn, using (5.7), shows

that Hζn converges in L2(α). So what it remains to show is that Hµ = limn→∞ Hζn. For this
last part, observe that because ζn converges to φ in L2(β), it is relatively easy to show that

∫ |ζn(x) − φ(x)|
π

√
4 − x2

λ(dx) −→
n→∞ 0.

Combining this with (5.13), we obtain that (here νn = ζn dβ)

lim
n→∞λ

({
x:

∣∣Hµ(x) − Hνn(x)
∣∣ " t

})
= 0

which yields the convergence in measure of Hνn toward Hµ as n → ∞. Since, Hνn converges
also in L2(α), it means that in fact Hνn converges in L2(α) and Hµ ∈ L2(α) which is what we
wanted.
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For the reverse implication, assume now we have Hµ ∈ L2(α). The first step is to show that µ

is absolutely continuous with respect to β or alternatively with respect to λ. To this end, we will
exploit (5.14). Indeed for any continuous function f supported on [−2,2],

lim
t→∞

πt

2

∫
1{x: |Hµ(x)|!t})f (x) dx =

∫
f dµs.

On the other hand, since f is supported on [−2,2], we can apply Hölder’s inequality followed
by Chebyshev’s to obtain

∫
1{x: |Hµ(x)|!t})f (x) dx ! λ

({
x ∈ [−2,2]:

∣∣Hµ(x)
∣∣ " t

})1/p‖f ‖q

! ‖f ‖q

tr/p

( 2∫

−2

|Hµ|r dλ

)1/p

for any p,q " 1 with 1/p + 1/q = 1 and r > p. In fact, we choose p,q, r such that 1 < p < r <

4/3 and using again Hölder’s inequality, we continue writing

2∫

−2

|Hµ|r dλ!
( 2∫

−2

∣∣Hµ(x)
∣∣2
α(dx)

)r/2( 2∫

−2

(
4π2

4 − x2

) r
2(2−r)

)(2−r)/2

! Cr‖Hµ‖r
L2(α)

.

The conclusion we draw from these estimates is that

πt

2

∣∣∣∣

∫
1{x: |Hµ(x)|!t})f (x) dx

∣∣∣∣ ! C

tr/p−1 ‖Hµ‖r/p

L2(α)
‖f ‖q

and thus, letting t → ∞,

∫
f dµs = 0,

which is nothing but the fact that µ is absolutely continuous with respect to λ and thus with
respect to β .
To go forward, we need to show that φ = dµ

dβ is in L2(β), or alternatively that φ − 1 ∈ L2(β).

To achieve this, consider L2
0(β) as the set of L2 functions of mean zero with respect to β and

let L2
0(α) be the set of L2 functions with mean zero with respect to α. We now show that Hβ

extends from the smooth functions in L2
0(β) into L2

0(α) such that

‖Hβψ‖L2(α) = 1√
2
‖ψ‖L2(β) (5.15)

for all ψ ∈ L2
0(β). From (5.7), it is clear that there is an operator L :L2

0(β) → L2
0(α) such that

L coincides with Hβ on smooth functions. The point is to show that Lφ = Hβφ for any function
φ ∈ L2

0(β). This can be done as follows. Take a φ ∈ L2
0(β) and approximate it in L2(β) with

some smooth functions ξn ∈ L2
0(β). Then, from the equality (5.7) on smooth functions, it follows
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that Hβξn is a Cauchy sequence in L2
0(α). On the other hand, using that ξn converges in L1(β)

combined with (5.13), we conclude that Hβξn forms a Cauchy sequence in measure and thus, its
limit in measure must be the same as its limit in L2(α), from which we deduce that Lφ = Hβφ.
Once the isometry property above is established, the fact that φ ∈ L2(β) follows now easily.

(2) We just proved this above as in Eq. (5.15).
(3) It is enough to consider the case I(µ, ν) finite, in which case we certainly have that both

µ,ν have densities dµ
dβ , dν

dβ ∈ L2(β). Writing, µ = φdβ and ν = ψdβ with φ,ψ ∈ L2(β), using
(2.11) the inequality to be proved becomes equivalent to

〈
E(φ −ψ), (φ −ψ)

〉
! 〈φ −ψ,φ −ψ〉

which follows from the fact that the spectrum of E (which is a bounded selfadjoint operator on
L2(β)) restricted to L2

0(β) is {1/n;n " 1}. Clearly, the equality is attained if φ(x)−ψ(x) = Cx,
the same thing as µ(dx) − ν(dx) = Cxβ(dx).

(4) Follows by scaling. !

Another consistent argument for the choice of the Fisher information is given by the following
analogy with the classical case.

In the classical case of the Ornstein–Uhlenbeck operator L, the connection between the en-
tropy and the Fisher information is given by the fact that the Fisher information appears naturally
as the derivative of the entropy along the semigroup generated by L.

We want to draw a similar picture in the case of measures on the interval [−2,2] with the
role of the Ornstein–Uhlenbeck operator L being played by the counting number operator N on
functions on [−2,2].

What we have in mind here is the following. The semigroup generated by the counting number
operator N is Pt and can be shown to be computed as

Pt f (x) =
∫

kt (x, y)f (y)β(dy)

with

kt (x, y) = 1 + 2
∑

n!1

e−tnφn(x)φn(y)

where the factor 2 in front of the summation comes from the fact that
∫
φ2

nβ(dy) = 1/2.
In the classical case, the derivative of the entropy along the semigroup Pt is exactly the Fisher

information. The same phenomena holds true in this local versions of the entropy and Fisher
information.

More precisely, assume that I(µ, ν) is finite. This means that both measures µ,ν have densi-
ties in L2(β) and taking φ = dµ

dβ − dν
dβ , from (2.11),

H(µ, ν) = 〈Eφ,φ〉.

If we consider now the measure µt =Pt (
dµ
dβ )dβ and similarly νt =Pt (

dν
dβ )dβ , then

d

dt
H(µt , νt ) = d

dt
〈EPt φ,Ptφ〉 =〈 ENPtφ,Pt φ〉 =〈Pt φ,Pt φ〉 = I(µt , νt ).
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It is the content of Theorem 3 which actually unifies the two versions of the Fisher informa-
tion, the one in terms of the Hilbert transform and the other one in terms of the densities of the
measures involved.

Thus the two points of view outlined above converge toward the same thing and gives a con-
sistent notion of Fisher information in this framework.

6. Lp considerations around local Log-Sobolev and an open problem

From the discussion in the previous section we learn that the local Log-Sobolev hold in the
form

2H(µ, ν) !
∫

|Hµ − Hν|2 dα.

It is natural to ask if this still remains true if we replace the L2 norm on the right-hand side by
another Lp norm. Phrased differently, is it true that there is a 1 ! p < 2 and a constant Cp > 0
such that for all probability measures µ,ν on [−2,2],

CpH(µ, ν) !
(∫

|Hµ − Hν|p dα

)2/p

. (6.1)

We do not know the answer to this question, but want to show that for p < 3/2 this is not
possible. This is based on the example given by measures µ,ν such that for 0 < r < 1 and a
small constant η

µ(dx) − ν(dx) = η

(∑

n!1

rn−1Tn(x/2)

)
β(dx).

From (5.6), we get that

H(µ − ν)(x) = η

(∑

n!1

rn−1Un−1(x/2)

)
= η

1 − rx + r2 .

With this choice and Proposition 1, we obtain that for 0 < r < 1,

H(µ, ν) = 2η2
∑

n!1

r2(n−1)

n
= −2η2 log

(
1 − r2).

Now for p < 3/2,

∫
|Hµ − Hν|p dα = ηp

2π

2∫

−2

1
(1 − rx + r2)p

√
4 − x2 dx = 16η2

1∫

0

√
u(1 − u)

(4ru + (1 − r)2)p
du

! 16ηp

(4r)p

1∫

0

u1/2−p du < ∞
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where in the middle we made the change of variable x = 2 − 4u, 0 ! u ! 1. The moral of this
calculation is that (6.1) cannot hold true with 1 ! p < 3/2 because the right-hand side is bounded
in r ∈ (0,1) and the left-hand side blows up as r approaches 1 from below.

For r = 3/2, using Mathematica, we obtain that

∫
|Hµ − Hν|3/2 dα = 16η3/2

1∫

0

√
u(1 − u)

(4ru + (1 − r)2)3/2 du

= η3/2

8

(
−4 + 6 log(2) − 2 log(1 − r)

)
+ O

((
log(1 − r)

)2)

which does not rule out (6.1).
For p = 3/2 we do not have a counterexample to (6.1) nor a proof of validity of it. We post

this as an open problem here.

Open Problem 1. There is a constant C > 0 such that for any probability measures µ,ν on
[−2,2],

CH(µ, ν) !
(∫

|Hµ − Hν|3/2 dα

)4/3

.

A positive answer to this question would give the optimal p for which (6.1) is true. A negative
answer would continue with the following.

Open Problem 2. Is there a 3/2 < p < 2 such that for some constant Cp > 0, (6.1) holds true
for any probability measures µ,ν? And if so, what is the smallest such p?

A reformulation of these open problems in terms of trigonometric series can be done based on
(5.6), (5.8) and the definition of the Chebyshev polynomials of second kind. Using an approx-
imation of the measures µ,ν with measures of the form φ dβ and ψ dβ , an equivalent form of
(6.1) is the following. What is the smallest 1 < p such that for any n " 1 and a1, a2, . . . , an ∈ R,

Cp

n∑

k=1

a2
k

k
!

( π∫

0

∣∣∣∣∣

n∑

k=1

ak sin(kt)

∣∣∣∣∣

p

sin2−p(t) dt

)2/p

? (6.2)

The conclusion of this section is that definitely 3/2 ! p, but it is not clear that the smallest p is
exactly 3/2.

7. HWI inequality

This section is dedicated to a version of the celebrated HWI from [11]. The statement is the
following.
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Theorem 4. For any probability measures µ,ν on [−2,2],

H(µ, ν) !
√

2I(µ, ν)W1(µ, ν) − 1
2
W 2

1 (µ, ν) (7.1)

with equality if µ(dx) − ν(dx) = Cxβ(dx).

Proof. It is sufficient to prove this in the case I(µ, ν) is finite. Thus, let η = dµ
dβ and ζ = dν

dβ with

η, ζ ∈ L2(β). Let ψ = η − ζ . Clearly, ψ ∈ L2(β).
Here, the main observation is that conform Corollary 3, the inequality we need to prove writes

equivalently as

〈Eψ,ψ〉 ! 2
√

〈ψ,ψ〉
〈
E2ψ,ψ

〉
−

〈
E2ψ,ψ

〉
.

Writing ψ = ∑
n!1 αnφn, this can be reinterpreted as

(∑

n!1

α2
n

(
1/n + 1/n2)

)2

! 4
∑

n!1

α2
n

∑

n!1

α2
n/n2. (∗)

To justify this, apply Cauchy–Schwartz as

(∑

n!1

α2
n

(
1/n + 1/n2)

)2

!
∑

n!1

α2
n

∑

n!1

α2
n

(
1/n + 1/n2)2

and then (∗) follows from the fact that (1/n + 1/n2)2 ! 4/n2. Tracing back all inequalities, we
see that equality follows for the case µ(dx) − ν(dx) = Cxβ(dx). !

8. Remarks

(1) It is interesting to point out that these local versions of the functional inequalities are
essentially on intervals. Taking an arbitrary set, say K , for instance a finite union of intervals,
the local transportation still holds for all measures supported on K . This can be easily seen by
simply considering the set K as a subset of an interval. Perhaps an interesting thing to investigate
here is the significance of the best constant in the inequality and the measures for which this is
achieved.

(2) It is interesting to figure out a similar global version of the Log-Sobolev inequality. This
should have some connection with the global transportation inequality.

(3) For the local Log-Sobolev, if we take this on an arbitrary set K , then it would be nice to
see a similar picture as in the case of the interval. It is not clear what the natural replacement of
the measure α from the definition of J should be. Even in the interval case, it is somehow an
interesting play between the semicircle and the arcsine laws, whose replacement is not obvious
for an arbitrary set K .
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